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NONEQUILIBRIUM COUNTERFLOW CAPILLARY IMPREGNATION 

G. I. Barenblatt and A. A. Gil'man UDC 532.546 

A model of capillary impregnation, taking account of disequilibrium of the phase 
permeabilities, is constructed on the basis of a general scheme of nonequilibrium 
two-phase filtration proposed in [3]; see also [2]. 

The theory of counterflow capillary impregnation of a porous medium is constantly under 
examination by researchers, in particular, in connection with the role played by this process 
in the displacement of petroleum by water in microinhomogeneous hydrophilic beds. The exist- 
ing model of capillary impregnation is based on the self-similar solution of [i] (see also 
[2]), using the classical Muskat-Leverette scheme of the filtration of inhomogeneous liquids. 
According to this scheme, the relative phase permeabilities of water and petroleum and also 
the reduced capillary pressure (the Leverette function) are regarded as universal functions 
of instantaneous saturation o, which may be determined from data on the steady flow of a 
mixture of the given composition. However, in reality, the characteristic impregnation time 
in low-permeability microinhomogeneous blocks may be comparable with the time to establish 
phase permeabilities and capillary pressure, i.e., the time for regrouping of the liquids 
along channels of the appropriate dimensions. For this reason, the model of counterflow capil- 
lary impregnation must take account of disequilibrium effects. 

i. Basic Equations of Model 

For the combined filtration of water and petroleum, under broad assumptions, Darcy's law 
is valid 

P 2 - - P ~  = T c o s O ( m / h ) l / 2 j .  (i) 

The simplest formulation of the scheme for taking account of disequilibrium [3, 2] rests 
on the basis that the functions fl, f2, J determined from the data on steady flow of the mix- 
ture are monotonic functions of the true water saturation o. The functions fl, f2 vary here 
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from zero to unity, and J decreases from infinity to zero with increase in o. Therefore, 
taking account of disequilibrium in the given scheme reduces to assuming that the functions 
fl, f=, J in a nonequilibrium flow are the same as in the equilibrium flow but are functions 
not of the true water saturation o but of some effective water saturation ~. (The only assump- 
tion here, in fact, is that the effective water saturation ~ for all three functions fl, f2, 
J is the same.) The kinetic equation between the effective saturation ~ and the true satura- 
tion o is taken in the form 

~ ~ + ~at~, ( 2 )  

where ~ is a constant for the given rock and liquid vapor, called the substitutional time. 
The conservation equations for the two components are reduced to the system 

mdz~ + V { vF (rl) + (T cos @/b~2)(mk) 1/2 F (~) ~ (~) VJ (~)} = O, ( 3 )  

Vv = 0. 

Here the function F is determined by the relation 

F (~) = [~ (n)/[h (~) § (~ I~)  h (~)1, (4) 

and v = u I + u 2 is the total flux of liquid. For counterflow capillary impregnation, the 
total flux is zero, v = 0, and the basic equation for the saturation takes the form 

Ot~ = •  (~ + ~O~). (5 )  

Here 

Tc~ ( @ )  1/2, 
= _ _  q) (~) ---- - -  F (~) [2 (~) d' (~)  d ~ .  ( 6 )  

~ o 

Since F, f2 > 0, J' < 0, the function r is positive and monotonically increasing. 
Further, since the function F(q) tends rapidly to zero as q + 0, like f2(q) as ~ + i, the 
function r has a high-order zero as N + 0 and a maximum when ~ = i. 

Within the framework of classical Muskat-Leverette equilibrium theory (see [2], for 
example), the substitutional time ~ is zero and the functions fz, f2, F, J are universal func- 
tions of the instantaneous water saturation o. In this case, the Ryzhik equation is valid 
for the water saturation in capillary impregnation 

Ol~- • (7) 

The d i f f e r e n c e  between Eqs. (5) and (7) i s  fundamenta l :  in  f a c t ,  Eq. (5) i s  i n s o l u b l e  
relative to the time derivative. Multiplying Eq. (5) by ~, differentiating with respect to 
the time, and adding the result to Eq. (5), a third-order equation is obtained for the effec- 
tive water saturation 

8t~ = zAq)09 + • (q). (8)  

Equation (8) is basic to the proposed model. It generalizes the well-known equation 
for the pressure p in the filtration of homogeneous liquid in a cracked-~orous medium [4] 
(see also [2]) 

@tP = xAp + :.;xatAp. ( 9 )  

2. Boundary Problems for the Equations of Nonequilibrium Capillary Impregnation 

The basic system of equations for the effective and true water saturation is written in 
the form 

z~A~ (q) -- (;I -- ~) = 0, ~0t~ - 11 -- ~ (i0) 

As is evident, this system is degenerate; it does not include the derivative of n with 
respect to the time and the spatial derivatives of o; this determines the smoothness proper- 
ties of the solution. The presence of the Laplacian r in Eq. (i0) requires continuity 
of the effective saturation q right to the boundary. Introducing the term cTStN on the right- 
hand side of the first relation in Eq. (i0), where s + 0 is a small parameter, gives 

• (11) -- (q -- ~) ~ sTOtN. (ii) 
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The appearance of the time derivative in Eq. (ii) entails specifying the effective satur- 
ation q(x, 0) at the initial moment. At the onset of impregnation t = 0, the true water satur- 

ation in the block is also specified 

a ( x ,  O ) :  ao(X). (12) 

At the boundary of the block, the true water saturation may be regarded as specified as a 
function of the point of the boundary and the time; water rapidly covers the boundary of the 
block and the block is immersed in mixture of the given composition. Therefore, in view of 
Eq. (2), it may be supposed that the effective saturation is also specified at the boundary. 
In particular, if the block is immersed in pure water from the very beginning, an effective 
water saturation D of unity is established at the boundary. Equation (ii) is a nonlinear 
parabolic equation in which the "fast" time t/E appears. Therefore, at a time that is large 
relative to e~ but small relative to the characteristic time of change in the true saturation 
�9 , the solution q = D0(x) satisfying the equation 

•  (~o (x)) --- ~l~ ~x) -}- ao (x) = 0 ( 1 3 )  

and the boundary condition (at t = 0) is established. In particular, if the block is immersed 
in pure water, the boundary condition takes the form q0(x) = 1 at values of x on the boundary 
of the block F. 

Knowing boundary and initial conditions, the solution q(x, t) giving the distribution 
of the effective saturation over space at an arbitrary instant of time may be constructed. 
After determining the effective saturation D(x, t), o(x, t) is found from the relation 

a:N--zxA~(N). (14) 
Note that discontinuities in the initial distribution of the true water saturation, in 

contrast to discontinuities in the effective water saturation (inside the block and at the 
boundary) do not disappear instantaneously. Since the effective water saturation is contin- 
uous, Eq. (2) gives 

[~] + TOt [a] = O, [a] = [air= o exp (--ti~), (15) 

where the symbol [o] denotes the discontinuity in o at some point. In particular, if the 
initial value of the true water saturation at some point of the boundary from inside the block 
is o0, while a value of unity is established from outside the block, the true water saturation 
at an internal point of the boundary at an arbitrary time t is 1 - (i - o0) exp (-t/~). 

3. Capillary Impregnation of Semiinfinite Block 

Consider first a block bounded by the plane x = 0 (x is coordinate measured along the normal 
to the boundary plane) and completely filled with petroleum, in the case when contact with 
pure water occurs at t > O. 

In this case, Eq. (8) takes the form 

3 
Ot~ = ~ 0 ~  (~) ~ • 0])- ( 1 6 )  

It is expedient to switch to the dimensionless independent variables $ = x/(• I/2, 
8 = t/~ in this equation; then an equation which does not contain the parameters is obtained 

2 ae~ = O ~  (11) ~- O~o(D (~). (17)  

Equation (17) is solved on the semiinfinite interval 0 ~ $ < ~ when @ > 0. Since o 0 
(x) ~ 0 in this case, Eq. (13) for the initial distribution of the effective water satura- 
tion takes the form 

d 2~  [~o (~)]ld~ 2 - -  Bo (~) = O. ( i 8 )  

The solution of Eq. (18) which is sought is continuous, has a continuous derivative d~[q0 
($)]/d$, and satisfies the conditions 

~o(O) = 1, m ( o o )  : o. ( 1 9 )  

In fact, the above construction of the function r is such that the solution D0(~) 
vanishes at the final point G0 and is then identically zero, so that q0($) ~ 0 when $ ~ $0. 
(Finiteness of the perturbation region does not apply when o 0 # 0.) It follows from the con- 
dition of continuity of d~[q0($)]/dgthatthis quantity also vanishes when $ = $0. Thus, a 
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o ~5 ~/~ 

Fig. i. Evolution of the water-saturation distribution 
in a semiinfinite sample. Curves 1-3 correspond to di- 
mensionless times 8 = 1 (i), 4.7 (2), and ~ (~ = O) (3). 

nonlinear eigenvalue problem is solved: the second-order Eq. (18) with the three boundary 
conditions 

No(0) = l, 0o(~0) = 0, d~)[qo(~0)]/d~ : 0, (20)  

and h e n c e  t h e  e i g e n v a l u e  $o i s  a l s o  found .  From t h e  i n i t i a l  c o n d i t i o n  q ( 5 ,  0) = q o ( 5 )  ob-  
t a i n e d  and t h e  bounda ry  c o n d i t i o n  q ( 0 ,  8) = 1, Eq. (17)  i s  s o l v e d .  S i n c e  t h e  p rob lem has  
no parameters, the calculation must be performed once for each function @(q)- The case 
T = 0 is degenerate and corresponds to the self-similar solution of [i]: o = o(5011/2). The 
impregnation region at each moment is bounded by the leading front x,(t) = (~)i/25,(0) ; when 
5 ~ $,, the water saturation is zero. The function 5,(0] must be determined in the course of 
solving the problem; 5,(0) = t0. When T = 0, 5,(0) - 8 I/2. The total amount of water enter- 
ing the block at each moment is of interest. Per unit cross section of the block, it is 

[ a(x, Odx=(• Q ( 0 ) =  [a (~ ,  0)d~. (21)  
b b 

Since o = q -- 80o = q - 8552@(q) according to Eqs. (2) and (5), the result obtained after 
integrating and taking account of the continuity of 85@(N) at 5 = 5,, i.e., the condition 
that 85@(n) : 0 when $ = 5,, is 

Q(O) = /' q(~, Old~+ (a~01))~=0. (22 )  

Also, from Eq. (5) 

~, 8 

Q (0) -- j' a (~, 0) d~ = - -  [ (0~q~ (q))~=od0. (23)  
0 0 

Some asymptotic estimates are now obtained. Suppose that at small q the function r 
has a power-law asymptote: @(q) = Cq n. Here C and n are positive constants. Introducing 
the moving coordinate ~ = 5,(8) - 5 measured from the impregnation front, small time inter- 
vals in which the velocity of impregnation-front propagation dS,/d8 = X may be regarded as con- 
stant are considered. Suppose that q = D~P, o = K~q close to the front. Substituting this 
into Eq. (i0) in the dimensionless form 

a{~ (0)- (0 - o) = 0, aea=o--a, (24) 

and equatin~ coefficients, it is found that p : 2/(n - i), q : (n + l)/(n - i), D : ((n - 1)2/ 
2Cn(n + i) I~(n-I), K : D/Xq. Hence it follows that the derivative BSo vanishes when 5 = 5,, 
while the derivative 85q undergoes a discontinuity from-~ to zero. 

Further, at small e, the effective water saturation q(5, 8)is close to the initial value 
q0(E). Integrating Eq. (18) and using the condition dr = 0 when 5 = 5,, it follows 
that at small e 

~0 

( a ~  (o))~=o -~ (do  No (~)]/ab~=o = - -  [ Oo (D a~, (25)  
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Fig. 2. Dependence of the depth of the impregnation 
front $, on the time: i) self-similar case (T = 0); 
2) �9 # 0; the dependence of the amount of absorbed 
water Q(8) on the time; 3) self-similar case (~ = 0); 
4) �9 # 0; 5) asymptote of Q(8) at small times: Q(8) = 
0.758. 

and hence from Eq. (23) 

~0 
Q(8) = (.( "% (~)d~)8. (26) 

0 

As is evident, the asymptote of the water inflow into the block at small times is a linear 
function of the time. 

4. Numerical Calculations 

The following model expression for ~(q) is chosen for the calculations 

(N) = ( 1 5 ~  _ 2405 __}_ 10q6)/2, ( 2 7 )  

so that n = 4, C = 15/2, D = (3/i00) I/s = 0.31, p = 2/3, q = 5/3. The results of the cal- 
culations are shown in Figs. i and 2. The distribution of the true water saturation at vari- 
ous dimensionless times 8 is shown in Fig. i, in the universal coordinates o, g/g,. The 
limiting curve corresponds to the self-similar solution of Eq. (7) in [i]. The time de- 
pendence of the impregnation-front coordinate and the amount of water entering the block is 
shown in Fig. 2, in universal coordinates. The asymptotes at large 8 = t/~ >> i (straight 
lines i and 3) correspond to self-similar solution. Straight line 5 corresponds to the 
asymptote in Eq. (26) at small times. The curves of Q(8) in Fig. 2 allow the influence of 
the decrease in restructuring time T on the influx of water into the block to be estimated. 

NOTATION 

o, water saturation; q, effective water saturation; u, filtration rate; p, pressure; k, 
permeability of medium; T, surface tension at water-petroleunr-rock triple boundary; 8, wetting 
angle; ~, viscosity,; f, relative permeability; m, porosity of medium; J, Leverette function; 
subscript 1 denotes water and subscript 2 petroleum; ~, substitutional time; F(o), saturation 
function defined by' Eq. (4); v, total liquid flux; • = T cos 8/(m/k)I/2D2; o 0, initial water 
saturation of sample; e, small parameter; #(D), function defined by Eq. (6); x, spatial 
coordinate measured along the sample; $,, dimensionless depth of front; Q, dimensionless in- 
flux of water in the sample; g, 8, dimensionless coordinate and time; C, D, K, p, q, place- 
determined constants. 
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